Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Per Med ; 20(1): 13-25, 2023 01.
Article in English | MEDLINE | ID: covidwho-2281166

ABSTRACT

With over 5.5 million deaths worldwide attributed to the respiratory disease COVID-19 caused by the novel coronavirus SARS-CoV-2, it is essential that continued efforts be made to track the evolution and spread of the virus globally. The authors previously presented a rapid and cost-effective method to sequence the entire SARS-CoV-2 genome with 95% coverage and 99.9% accuracy. This method is advantageous for identifying and tracking variants in the SARS-CoV-2 genome compared with traditional short-read sequencing methods which can be time-consuming and costly. Herein, the addition of genotyping probes to a DNA chip that targets known SARS-CoV-2 variants is presented. The incorporation of genotyping probe sets along with the advent of a moving average filter improved the sequencing coverage and accuracy of the SARS-CoV-2 genome.


Throughout the COVID-19 pandemic the virus known as SARS-CoV-2 has continued to mutate and evolve. It is imperative to continue to track these mutations and where the virus has traveled to best inform healthcare practices and global strategies to combat the virus. The authors previously developed a method to investigate 95% of this viral genome with 99.9% accuracy that was more cost-effective and less time-consuming than previous methods. In this work, specific markers were added to the technology to allow tracking of mutations in the virus that have already been documented. In doing so, the accuracy and how much of the viral genome can be sequenced was improved.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/genetics , Genotype , Genome, Viral/genetics
2.
Public health ; 2022.
Article in English | EuropePMC | ID: covidwho-2034015

ABSTRACT

Objectives The purpose of this study was to examine the relationship between test site availability and testing rate within the context of social determinants of health. Study Design A retrospective ecological investigation was conducted using statewide COVID-19 testing data between March 2020 and December 2021. Methods Ordinary least squares and geographically weighted regression were used to estimate state and zip code level associations between testing rate and testing sites per capita, adjusting for neighbourhood level confounders. Results Findings indicate that site availability is positively associated with the zip code level testing rate and that this association is amplified in communities of greater economic deprivation. Additionally, economic deprivation is a key factor for consideration when examining ethnic differences in testing in medically underserved states. Conclusion The study findings could be used to guide delivery of testing facilities in resource-constrained states.

3.
PLoS One ; 16(11): e0259538, 2021.
Article in English | MEDLINE | ID: covidwho-1502077

ABSTRACT

During the COVID-19 pandemic, West Virginia developed an aggressive SARS-CoV-2 testing strategy which included utilizing pop-up mobile testing in locations anticipated to have near-term increases in SARS-CoV-2 infections. This study describes and compares two methods for predicting near-term SARS-CoV-2 incidence in West Virginia counties. The first method, Rt Only, is solely based on producing forecasts for each county using the daily instantaneous reproductive numbers, Rt. The second method, ML+Rt, is a machine learning approach that uses a Long Short-Term Memory network to predict the near-term number of cases for each county using epidemiological statistics such as Rt, county population information, and time series trends including information on major holidays, as well as leveraging statewide COVID-19 trends across counties and county population size. Both approaches used daily county-level SARS-CoV-2 incidence data provided by the West Virginia Department Health and Human Resources beginning April 2020. The methods are compared on the accuracy of near-term SARS-CoV-2 increases predictions by county over 17 weeks from January 1, 2021- April 30, 2021. Both methods performed well (correlation between forecasted number of cases and the actual number of cases week over week is 0.872 for the ML+Rt method and 0.867 for the Rt Only method) but differ in performance at various time points. Over the 17-week assessment period, the ML+Rt method outperforms the Rt Only method in identifying larger spikes. Results show that both methods perform adequately in both rural and non-rural predictions. Finally, a detailed discussion on practical issues regarding implementing forecasting models for public health action based on Rt is provided, and the potential for further development of machine learning methods that are enhanced by Rt.


Subject(s)
COVID-19/epidemiology , Forecasting/methods , Machine Learning , COVID-19 Testing/statistics & numerical data , Humans , Incidence , Models, Statistical , Predictive Value of Tests , Rural Population , West Virginia/epidemiology
4.
Langmuir ; 37(16): 4763-4771, 2021 04 27.
Article in English | MEDLINE | ID: covidwho-1180210

ABSTRACT

SARS-CoV-2 has infected over 128 million people worldwide, and until a vaccine is developed and widely disseminated, vigilant testing and contact tracing are the most effective ways to slow the spread of COVID-19. Typical clinical testing only confirms the presence or absence of the virus, but rather, a simple and rapid testing procedure that sequences the entire genome would be impactful and allow for tracing the spread of the virus and variants, as well as the appearance of new variants. However, traditional short read sequencing methods are time consuming and expensive. Herein, we describe a tiled genome array that we developed for rapid and inexpensive full viral genome resequencing, and we have applied our SARS-CoV-2-specific genome tiling array to rapidly and accurately resequence the viral genome from eight clinical samples. We have resequenced eight samples acquired from patients in Wyoming that tested positive for SARS-CoV-2. We were ultimately able to sequence over 95% of the genome of each sample with greater than 99.9% average accuracy.


Subject(s)
COVID-19 , SARS-CoV-2 , Genome, Viral , Humans , Oligonucleotide Array Sequence Analysis
SELECTION OF CITATIONS
SEARCH DETAIL